Giải Nobel kinh tế 2011: VAR, SVAR – Thomas Sargent & Christopher Sims

Giải Nobel kinh tế 2011

(Tác giả: Lê Hồng Giang – Nguồn: kinhtetaichinh.blogspot.com)

1. Một số quick comments:

– Sau 3 năm giải Nobel kinh tế được trao cho những người có khuynh hướng leftist, năm nay 2 nhà kinh tế được giải đều có khuynh hướng rightist, chính Krugman phải thừa nhận giải năm nay thuộc về phe “fresh water”.

– Giải trao cho Christopher Sims có thể nói là “a slap in Krugman’s face” vì một trong những công trình quan trọng nhất của Sims là chứng mình empirical model dựa vào IS-LM kém hơn một simple VAR và Sims đề nghị bỏ IS-LM khỏi textbook, điều mà Krugman dè bỉu (dark age) lâu nay trên blog.

– Giải năm nay có thể tóm gọn lại là trao cho mảng nghiên cứu về VAR/SVAR, nghĩa là empirical/econometric macro.

– Một trong những favorite macro textbook của tôi là quyển Macroeconomic Theory của Sargent dù khá cũ (ông còn có 2 quyển khác mới hơn nhưng tôi không thích bằng quyển này). Mấy hôm trước tôi tình cờ mở ra xem lại quyển này nhân cuộc tranh luận trên blogosphere về IS-LM, 3 chương đầu thực sự là classic work, rất cần thiết cho các mô hình VAR/SVAR sau này.

– Tôi không biết giới economist ở VN dịch thuật ngữ VAR như thế nào. Bài báo này dịch “vector autoregressive” thành “sự tự điều chỉnh véc-tơ” không được chuẩn lắm. Regressive/regression đã được dịch rộng rãi là “hồi qui”, cho nên autoregressive có thể dịch là “tự hồi qui”. Vector tất nhiên là véc-tơ nhưng nếu tôi được đề nghị dịch tôi sẽ dịch thành “hệ” (với nghĩa là một hệ thống nhiều biến số/phương trình), VAR dịch thành “hệ tự hồi qui”, SVAR là “hệ tự hồi qui có cấu trúc”.

– Một bài viết giới thiệu về identification problem mà Sims đã giải quyết, và về causality test sử dụng impulse response functions.

– MR có 2 bài tóm tắt về các công trình của Sargent Sims.

– Các bạn sinh viên kinh tế nên đọc bài review này của Nobel Committee.

– Không kể Krugman, không phải ai cũng hào hứng về giải Nobel kinh tế năm nay, ví dụ ở đây đây.

– Ứng dụng VAR và residual decomposition để phân tích ảnh hưởng của giá dầu vào kinh tế.

2. Một version của phần dưới đây đã đăng trên SGTT:

Cho đến cuối thập kỷ 1960, giới nghiên cứu và hoạch định chính sách vĩ mô sử dụng những mô hình kinh tế thực nghiệm (macroeconometric models) được xây dựng trên cơ sở lý thuyết Keynes để phục vụ cho công tác phân tích và dự báo kinh tế. Một số mô hình nổi tiếng như Multimod, Fair, Wharton, Nigem, Murphy bao gồm hàng chục, thậm chí hàng trăm phương trình biểu diễn các quan hệ kinh tế vĩ mô quan trọng. Mỗi phương trình biểu diễn quan hệ (linear) của một biến số vĩ mô với các biến khác trong mô hình hoặc các biến exogenous (biến ngoài mô hình). Ví dụ tổng đầu tư của nền kinh tế sẽ là một phương trình phụ thuộc vào lãi suất và xu hướng FDI, hay lạm phát sẽ phụ thuộc vào cung tiền và giá nguyên liệu thô trên thế giới.

Vào cuối giai đoạn này các nhà kinh tế đã nhận thấy hai khiếm khuyết quan trọng của nhóm mô hình này. Thứ nhất rất nhiều lý thuyết cho rằng các biến số kinh tế không chỉ phụ thuộc vào quan hệ hiện thời mà còn phụ thuộc vào kỳ vọng trong tương lai, ví dụ điển hình nhất là lãi suất danh nghĩa phụ thuộc vào kỳ vọng lạm phát. Hầu hết các mô hình lúc đó đều chỉ sử dụng exogenous expectation, nghĩa là yếu tố này phải được xác định bên ngoài mô hình. Rõ ràng đây là một khiếm khuyết cực lớn vì như vậy những phân tích/dự báo sử dụng các mô hình này phải phụ thuộc vào giả định của expectation – hay nói cách khác những mô hình loại này chẳng dự báo được gì vì cần đầu vào là một thứ dự báo khác. Thứ hai, các biến số nội tại bên trong các mô hình đó không thể tương tác qua lại với nhau ngoài một số giả định rất đơn giản. Tất nhiên kỹ thuật VAR đã có trước đó nhưng vấn đề là nó chỉ áp dụng được cho các reduced form system, nghĩa là những hệ phương trình đã được giải ra từ mô hình lý thuyết. Điều này dẫn đến vấn đề identification problem (xem link bên trên) nghĩa là sau khi ước lượng VAR các residual không có ý nghĩa kinh tế và do vậy không giúp gì cho việc phân tích kết quả mô hình.

Vào những năm đầu thập kỷ 1970, hai nhà kinh tế trẻ Thomas Sargent và Christopher Sims trong quá trình tìm lời giải cho hai thách thức này đã mở ra một kỷ nguyên mới trong lĩnh vực mô hình hóa kinh tế vĩ mô. Sims với một loạt nghiên cứu của mình đã đưa ra một phương pháp mới ước lượng toàn bộ các phương trình vĩ mô bằng VAR do đó cho phép các biến số có ảnh hưởng qua lại lẫn nhau. Điểm đặc biệt trong phương pháp của Sims là khả năng phân tách (decompose) từng cú sốc ngẫu nhiên trong mô hình để chỉ ra nguyên nhân nào dẫn đến lạm phát hay suy thoái kinh tế. Cụ thể, Sims đưa ra một phương pháp decompose VAR residuals dựa vào việc xắp xếp thứ tự các phương trình trong VAR để phản ánh thứ tự ảnh hưởng của các biến số lên nhau. Ví dụ phương trình cho output được xếp bên dưới phương trình lãi suất và lạm phát vì output chịu ảnh hưởng của cả 2 loại shocks này. Không những thế phương pháp của Sims còn giúp các nhà kinh tế ước lượng được mức độ và thời gian phản ứng của một nền kinh tế cụ thể với từng loại sốc khác nhau thông qua impulse response functions, do đó vừa giúp cho công tác dự báo dễ dàng hơn vừa có thể đề ra những chính sách đối phó thích hợp (xem link bên trên về ứng dụng xác định ảnh hưởng của giá dầu vào tăng trưởng).

Song song với Sims, Sargent đã thành công đưa yếu tố kỳ vọng (rational expectation) vào các mô hình kinh tế thực nghiệm. Điểm đột phá quan trọng của Sargent là biến đổi những yếu tố kỳ vọng thành một số phương trình giới hạn đồng thời (cross equation constraints) lên một vài biến số vĩ mô trong một hệ VAR. Để thực hiện điều này Sargent đã đưa ngược các cấu trúc kinh tế trở lại VAR (do đó gọi là structural VAR để phân biệt với reduced form VAR của Sims). Nhờ sáng kiến này mà một mô hình phụ thuộc vào các yếu tố kỳ vọng trong tương lai có thể rút gọn về một hệ VAR mà Sims đã tìm ra lời giải trước đó không lâu. Trong khi Sims nhấn mạnh vào số liệu thực tế và đơn giản hóa tối đa cấu trúc lý thuyết (ngay cả việc ordering các phương trình cũng cần rất ít lý thuyết), Sargent đã khéo léo đưa các quan hệ lý thuyết quay trở lại mô hình mà không phá vỡ phương pháp ước lượng của Sims. Chính nhờ cách biến đổi của Sargent cho phép mô hình hóa những quan hệ kinh tế cơ bản nhất (micro-based models) mà những mô hình xây dựng theo phương pháp này có thể áp dụng ngay cả khi các chính sách hay cơ chế kinh tế thay đổi (miễn là các hành vi micro không đổi).

Mặc dù hai nhà kinh tế này, nhất là Sargent, còn nhiều đóng góp quan trọng khác cho kinh tế học, giải Nobel Kinh tế năm nay được xác nhận trao cho công trình các mô hình kinh tế vĩ mô thực nghiệm của họ (empirical macroeconomic models). Quả thực đây là thời điểm mà nhiều tranh luận chính sách cần câu trả lời từ các kết quả ước lượng thực nghiệm. Liệu các chính sách kích cầu có hiệu quả như lý thuyết chỉ ra hay không? Liệu các biện pháp nới lỏng số lượng tiền tệ có ảnh hưởng gì lên tăng trưởng tín dụng hay không? Một cú sốc giá dầu thô sẽ có ảnh hưởng đến tăng trưởng kinh tế thế giới như thế nào? Những câu hỏi này chỉ có thể trả lời được bằng các mô hình vĩ mô thực nghiệm hiện đại mà nền tảng được xây dựng trên phương pháp của Sims và Sargent. [Nói cho công bằng, macroeconometric models của những năm 60 hay thậm chí univariate time series vẫn còn được sử dụng khá rộng rãi, bên cạnh đó DSGE với Bayesian VAR đang dần dần thay thế VAR cổ điển].

Với những vấn đề kinh tế nóng hổi của Việt nam như nguyên nhân nào gây nên lạm phát gia tăng tăng hay hiện tại đã nên hạ dần lãi suất hay chưa cũng rất cần trả lời bằng một mô hình kinh tế thực nghiệm. Ngay cả khi Việt nam chưa có một mô hình VAR hay SVAR chất lượng để trả lời trực tiếp những câu hỏi đó, những kết quả nghiên cứu của Sims và Sargent có nhiều gợi ý chính sách quan trọng. Ví dụ kết luận của Sargent về vai trò quyết định của chính sách tài khóa trong việc chống lạm phát hay ước lượng của Sims về khoảng thời gian một đến hai năm thắt chặt tiền tệ mới kéo được kỳ vọng lạm phát xuống ít nhất cũng gợi ý cho Việt nam nên đối phó với lạm phát qua những kênh chính sách nào. Hi vọng Thomas Sargent và Christopher Sims sẽ được nhắc đến nhiều hơn ở Việt nam ngay cả sau khi giải Nobel Kinh tế không còn nóng nữa.

———-

Ghi chú: Như vậy là có (ít nhất) 3 kí hiệu tương tự nhau:

1. Var (Variance): Phương sai

2. VaR (Value At Risk)

3. VAR (Vector autoregression): Hệ tự hồi qui

—————&&—————-

Trả lời

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s

%d bloggers like this: